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(Acknowledgements Omitted for Blind Review) 
 

Abstract: It seems like we care about at least two features of our credence function: accuracy 
(high credences in truths, low credences in falsehoods) and verisimilitude (investing higher 
credence in worlds that are more similar to the actual world).  Accuracy-first epistemology 
requires that we care about one feature of our credence function: accuracy. So if you want 
to be a verisimilitude-valuing accuracy-firster, you must be able to think of the value 
verisimilitude as somehow built into the value of accuracy. Can this be done?  In a recent 
paper, Graham Oddie has argued that it cannot, at least if we want the accuracy measure 
to be proper.  I argue that it can.   

 
1. Introduction 

In the best possible world, I have credence 1 in all truths and credence 0 in all falsehoods.  
Alas, the best possible world is not the actual one.  Given that I won’t be perfectly right, there are 
two other things I might care about: being close to right and being kind of right.1  I use “close-to-right,” 
to refer to the value that is sometimes called “gradational accuracy” (henceforth “accuracy”).  
I’m close-to-right insofar as I have high credences in true propositions and low credences in false 
ones.  I use “kind-of-right” to refer to the value that is sometimes called “verisimilitude.”  I’m 
kind of right insofar as more of my credence is invested in worlds that are similar to the actual 
world.   

Being close to right and being kind of right are both notions of approximate rightness. 
Here’s an example to tease them apart: As a matter of fact, there are eight planets in our solar 
system.  Consider the credences of Aggie and Vera: 

 
Aggie                                               Vera 
Pr(Eight planets) = 0.5                    Pr(Seven planets) = 1 
Pr(One planet) = 0.5 

 
Who is doing better?  Aggie invests more credence in the actual 8-planeted world than Vera does 
(0.5 vs 0).  So it seems plausible that Aggie does better than Vera with respect to accuracy.  On the 
other hand, Aggie invests a large chunk of credence in a world that is extremely dissimilar to the 

                                                
1 Thanks to [omitted] for the terminology.  
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way things turned out, whereas all of Vera’s credence is invested in a world that is quite similar to 
the actual world.  So plausibly Vera does better than Aggie with respect to verisimilitude. 

It seems that we value being both close-to-right and kind-of-right: accuracy and 
verisimilitude.  So how should we form credences in light of these values?  

Epistemic utility theory (EUT) is in the business of deriving norms governing our credences 
from our epistemic values.  In practice, however, much of the EUT literature has assumed that the 
only thing that’s epistemically valuable is accuracy, and “accuracy first” theorists have been 
chugging away, deriving all sorts of interesting epistemic norms from accuracy considerations.  As 
it turns out, many very attractive norms can be derived in this way: norms like probabilism and 
conditionalization.2  However, these arguments only motivate the norms in question if we assume 
that accuracy is all we’re after in forming beliefs.  If other values are important, then the fact that, 
for instance, every non-probabilistic credence function is accuracy-dominated by a probabilistic 
one won’t necessarily imply that we should be probabilistic.  After all, the non-probabilistic ones 
might be doing well with respect to some other values.  So thinking that, not only accuracy, but 
also verisimilitude is epistemically valuable has the potential to wreak havoc to accuracy-first 
epistemology. 

It’s not just a program that some formal epistemologists are interested in that is threatened 
by thinking that verisimilitude, in addition to accuracy, is valuable.  It would be strange if it turned 
out that agents need to be trading off accuracy and verisimilitude considerations when forming 
their opinions.  Suppose S’s evidence supports credence 0.9 that there are 8 planets and credence 
0.1 that there is one planet.  Her evidence decisively rules out every other number of planets. It 
would be odd if she should think: “there’s a high probability that there are 8 planets, and if there 
are 8 planets, I’m better off investing whatever credence isn’t invested in the 8 planet world in the 
7 planet world than I am investing it in the 1 planet world.  So perhaps I should move some of my 
credence from the 1 planet world to the 7 planet world.”  Somehow, whatever norms we derive 
from the fact that we value both accuracy and verisimilitude should rule out reasoning in this way. 

One way to be a verisimilitude-valuing accuracy-firster and to assure that reasoning in the 
way described above is unwarranted is to show that valuing verisimilitude is just a particular way 
of valuing accuracy.  According to this picture, all we need to do in our inquiry is keep caring about 
accuracy and, in caring about accuracy, verisimilitude will take care of itself.  (Exactly how this 
works will be explained below). But this hope appears to have been dashed in a forthcoming article 
by Graham Oddie.  Oddie argues that given a plausible constraint on accuracy measures called 
“propriety” (proper measures are those according to which every probability function maximizes 

                                                
2 For a comprehensive presentation of the program see Pettigrew (2016). 
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expected accuracy relative to itself)3 there simply is no way of valuing accuracy that can 
appropriately account for the value of verisimilitude.  The accuracy-first epistemology program 
requires that the accuracy measures we use are proper, so if the value of verisimilitude can only be 
captured by improper measures, accuracy-first is in trouble. 

The first goal of this paper is to argue, contra Oddie, that the value of verisimilar credences 
can indeed be captured by proper accuracy measures.  However, as we’ll see, given propriety, the 
relationship between accuracy and verisimilitude is not all one might have hoped for: it’s a positive 
and meaningful relationship, but a bit vexed.  The second goal of this paper is to present some 
results aimed at mapping out some of the contours of this complex relationship.  One upshot of 
the results that follow is this: both proper and improper measures can capture the value of 
verisimilitude.  The difference between them is that there are improper measures that care only 
about how much credence is invested in the actual world, and how verisimilar the credence 
function is.  Proper measures care about at least one additional feature: how evenly credence is 
distributed amongst certain false propositions.  In fact, as we’ll see, a version of the Brier score (a 
much loved proper accuracy measure in accuracy-first circles) cares about exactly three things: the 
amount of credence invested in the actual world, verisimilitude, and evenness of distribution 
amongst (a certain class of) falsehoods.  At the end I’ll appeal to results by Schervish (1989) and 
Levinstein (2017) to argue that these three features are exactly the ones that are important from a 
practical perspective when we don’t know what sorts of decisions we’ll face in the future.   

 
2. Some Nuts and Bolts 

Before delving in, I want to present the basics of the accuracy framework. (Familiar readers 
may wish to skip this section). 

Let Ω be a finite set of possible worlds (mutually exclusive possibilities) and let P(Ω) be the 
power set of Ω – the set of sets of worlds in Ω.  We’ll be thinking of propositions as sets of worlds 
(members of P(Ω)). Credence functions defined on Ω will be assignments of numbers in [0,1] 
(credences) to the propositions in P(Ω).4  We can measure how close someone’s credences are to 
being right at some world using an accuracy measure. There are two types of accuracy measures 
we’ll be looking at: local and global. 

A local accuracy measure takes as input some credence c and a truth value (1 for true, 0 or 
false), and outputs a number (also in [0,1]) which represents how accurate someone is who has 
credence c in a proposition, given the proposition’s truth value.  So, for example, having credence 
0.9 in something true will get a pretty good accuracy score, whereas having credence .5 in 

                                                
3 See e.g. Greaves and Wallace (2006), Joyce (2009), and Pettigrew (2016) for discussion of propriety and its 
motivations.    
4 For simplicity, I’ll be assuming throughout that the credence functions in questions satisfy the axioms of probability.  
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something true will get a worse score. It’s easier for certain purposes to use measures of inaccuracy 
rather than accuracy.  So we’ll say that .9 in a truth is less inaccurate than 0.5 in a truth.  We’ll use 
“Ilocal” to represent a local inaccuracy measure: 

 
Ilocal:    [0,1]  X  {0,1} à [0,1]. 

                      (credence)     (truth value)   (inaccuracy score) 

 
Global inaccuracy measures take as input an entire credence function and a world, and 

output a number representing how inaccurate the credence function is in that world. We’ll use 
“Iglobal” to represent a global inaccuracy measure.  If C is the set of credence functions defined over 
a set over worlds Ω: 

 
Iglobal:     C  X  Ω à  [0,1] 

 
We’ll think of the global inaccuracy of a credence function at world w as a sum of the local 
inaccuracy scores that the credence function gets in w for each proposition it assigns credence to.5     
 
3. First Attempts 
 At first glance it seems like accuracy and verisimilitude are two completely different beasts.  
Accuracy is based on similarity relations between credence functions: in particular, accuracy at world 
w is concerned with the similarity between any particular credence function, and the omniscient 
one at w (the one that assigns 1 to truths and 0 to falsehoods).  Versimilitude, in contrast, is based 
on similarity relations between worlds.  The person who thinks there are seven planets in our solar 
system is doing better than the person who thinks there is one planet, because the world in which 
there are seven planets is more similar to the actual world than is the world in which there is just 
one. 
 But at second glance it seems that the seven-planeter is also, in certain respects, more accurate 
– not merely more verisimilar– than the one-planeter.  The seven-planeter, for example, is accurate 
with respect to the following propositions: There are at least seven planets, there are at least six 
planets, there are between four and nine planets and so on.  The one-planeter is wrong about all 
of those things.  So, you might think, we can explain what’s better about the seven-planeter in terms 
of accuracy alone.   
 Sadly, things are not so simple.  For the one-planeter is right about many things that the 
seven-planeter is wrong about: that there are either one or eight planets, that there are seven 

                                                
5 This assumption is sometimes called “Additivity.”  Note that the sum can be weighted – more on that later. 
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planets if and only if there are two, that the number of planets is greater than seven or less than 
five, and so forth.  In fact, the one-planeter and the seven-planeter are right about exactly the same 
number of propositions (Oddie (forthcoming)).    
 Still, you might think, the propositions that the seven-planeter is right about are better than 
the propositions that the one-planeter is right about.  That there are at least six planets is a very 
respectable proposition.  That there are two planets if and only if there are seven is a weird ugly 
one.  Greaves and Wallace (2006) propose that we can reduce the value of verisimilitude to the 
value of accuracy by assigning different weights to different propositions.  Here’s the thought: recall 
that how accurate a person is overall is a function of how accurate they are with respect to 
individual propositions.  But instead of just adding up a person’s accuracy score for each 
proposition, we can weight those scores to reflect the fact that we think that there are certain 
propositions it’s more important to be right about than others.  If we weight more heavily 
propositions like “there are at least six planets” than propositions like “there are two or seven 
planets,” perhaps we can get the result that the seven-planeter is more (globally) accurate than the 
one-planeter.6   
 The Greaves and Wallace proposal seems promising.  But Oddie argues that if one meets 
a constraint that he takes to be an extremely minimal requirement on being a verisimilitude valuer, 
there is no way of assigning weights to propositions that is consistent with the inaccuracy measure 
being proper.  So Oddie thinks we have a choice: give up on the inaccuracy measure being proper 
(and so give up on the accuracy-first epistemology program), or give up valuing verisimilitude.  
Both options are unattractive.  
 Here’s my plan for bringing accuracy and verisimilitude back into harmony: first, I’ll argue 
that Oddie’s constraint is too strong.  There are plenty of ways in which one can value 
verisimilitude without meeting Oddie’s constraint (here I’ll be echoing some considerations raised 
by Jeffery Dunn (forthcoming)).  Second, I’ll offer some alternative constraints for what it takes to 
value verisimilitude and show that proper inaccuracy measures can satisfy them.  
 
3. Oddie’s Constraint: Proximity 
 Oddie thinks that if an inaccuracy measure cares about verisimilitude, then it must satisfy 
the following constraint, which he calls “Weak Proximity” (I’m going to argue that it’s too strong, 
so I’ll take the liberty of renaming it “Oddie’s Proximity”): 
 

                                                
6 I’m going to be understanding this proposal as one on which the weighting of the propositions does not depend on 
which world is actual.  Both Oddie (forthcoming) and Levinstein (forthcoming) provide compelling arguments for the 
claim that reconciling accuracy and verisimilitude on the assumption that the distance between worlds depends on 
which world is actual is hopeless.      
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Oddie’s Proximity  
Consider a proposition P, thought of as a set of worlds in Ω.  For any set of worlds, P, we can 
consider the members of that set that are closest to the actual world.  We’ll call each such world “a 
most accurate P-world.”   
Let @ be the actual world and w be a most accurate P-world.   
 
 
  
 
 
 
 
Let b be a credence function that assigns credence 1 to w. Let c be a credence function that assigns 
non-zero credence to all and only the members of P.  For any such b and c, b is at least as accurate 
as c at @. 
 
 Oddie’s constraint is too strong. To see why, let’s look at an example: Suppose that there 
are five possible worlds w1…w5 where wi is a world containing exactly i planets, and suppose that 
the actual world is a world with three planets.  We’ll let the distance between any two worlds be 
the difference in number of planets between those worlds. Now consider two credence functions: o 
(for “opinionated”) and a (for “ambivalent”):  
o assigns credence 1 to w4. 
a assigns credence 0.5 to w4 and 0.5 to w2. 
 

w1: 1 planet w2: 2 planets 
 
a(w2) = 0.5 

w3=@:3 planets w4: 4 planets 
o(w4) = 1  
a(w4) = 0.5 

w5: 5 planets 

Proximity entails that a can’t be doing better than o accuracy-wise.   
But why does caring about verisimilitude mean that we can’t think of a as doing better than 

o accuracy-wise? Oddie’s thought, I take it, is this: o and a are doing equally well with respect to 
verisimilitude – they both invest all of their credence in worlds that are 1-unit away from the actual 
world. They also each invest the same amount of credence in the actual world (0). So there are 
simply no grounds for thinking that a is doing better than o.  But this line of thought requires more 
than thinking that verisimilitude is important: it essentially requires thinking that the accuracy of a 
credence function can’t depend on any features of the credence function other than: 

• How much credence is invested in the actual world 

P             
@ 

w 
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• How well it fares with respect to verisimilitude (how close to the actual world are the worlds 
in which it invests positive credence). 

But one might think that verisimilitude is valuable even if one thinks that additional features of the 
credence function are relevant to its accuracy.  In particular, you might think that another relevant 
feature is: 

• The evenness with which the credence function distributes its credence amongst non-actual 
worlds. 

o and a differ with respect to this feature: a distributes her non-actual-worldly credence more evenly 
than o.  Whether it’s plausible that evenness of distribution is relevant to accuracy is a question 
we’ll come back to (I’ll argue that it is.  Dunn (forthcoming) does as well). But the thing to note for 
now is that many popular inaccuracy measures prefer credence functions that distribute credence 
more evenly amongst non-actual worlds. Furthermore, there is nothing about valuing 
verisimilitude that requires that we can’t also value evenness of distribution.  Since Oddie’s 
Proximity is committed to the claim that either evenness of distribution doesn’t matter or that if it 
does matter, then, all else equal, the credence function that’s more opinionated is the more accurate 
one, Oddie’s constraint is too strong. Taking it as a desideratum requires more than valuing 
verisimilitude: it requires taking a stand on another matter altogether. 
 
4. The Good 

Oddie argues for the claim that verisimilitude can’t be captured by proper inaccuracy 
measures by choosing a particular space of worlds and then showing that there is no global 
inaccuracy measure that is proper and that satisfies his proximity principle for that space.  Since 
Oddie’s proof makes use of a particular space of worlds, Oddie hasn’t shown that there are no 
spaces of worlds for which there are verisimilitude-valuing proper inaccuracy measures.  However, 
Oddie chose a very natural space for his proof, and this suffices to illustrate his point that there is 
a tension between propriety and his proximity constraint.  To keep things tractable, I’m going to 
follow Oddie in this respect.  I too will be looking at particular spaces of worlds (the same ones as 
Oddie) and I’ll show that there are proper inaccuracy measures that value verisimilitude over those 
spaces.  Since, like Oddie, my proofs will make use of particular spaces of worlds, I will not have 
shown that, for every space of worlds, there is a proper inaccuracy measure that values 
verisimilitude.  But my hope is that the results that follows will suffice to show that there is no 
reason to expect otherwise: there is no inherent tension between proper accuracy and 
verisimilitude. 
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4.1. Proximity over the Disagreement Metric 
A minimal constraint on what’s involved in valuing verisimilitude doesn’t say that whenever 

one credence function is more verisimilar, it’s more accurate.  A minimal constraint says that, all 
else equal, the more verisimilar credence function is more accurate.  This is the first sort of constraint 
we’ll be looking for.  As we proceed, we will generalize, and by the end we’ll see exactly what needs 
to be held fixed to guarantee that the more verisimilar credence function is more accurate.  
(Roughly, the answer will be: we need to hold fixed how much credence is invested in the actual 
world and how evenly credence is distributed amongst certain falsehoods).  

In this section I’ll present a proximity constraint over spaces of worlds where the distance 
between worlds is given by what I’ll call “the disagreement metric.”   

To get a sense of the metric, let’s start with Oddie’s example: We’re wondering about the 
weather tomorrow.  In particular, we’re wondering whether it will be hot (H) and whether it will 
be rainy (R).  The set of worlds we’re considering consists of the four possible answers to these 
questions: H&R, H&~R, ~H&R, ~H&~R, and the distance between any two worlds is given by 
the number of disagreements between those worlds concerning the propositions H and R. 7  If the 
actual world (@) is H&R, and we let D stand for the distance from @, we can represent the space 
as follows: 

 
 

 
 
 
 
 
 
 

The first replacement for Oddie’s Proximity that I will offer, which I’ll call “Proximity 1,” will 
apply to any space of worlds for which there is some set of propositions (which we’ll call “the atomic 
propositions”) such that the distance between any two worlds is given by the number of 
disagreements between those worlds with respect to the atomic propositions.  
 Proximity 1 says roughly this: suppose we have a finite set of worlds Ω that b and c distribute 
their credence over, where the distance between worlds is given by the disagreement metric.  Now 
let’s hold everything fixed between b and c, except for verisimilitude.  In particular, we’ll suppose 
that b and c are identical distributions over Ω except for the fact that there’s at least one pair of 
worlds such that b and c’s credences are swapped between these worlds, with b investing the larger 
credence in the closer world, and c investing the larger credence in the further world.  Also, in the 

                                                
7 Two worlds disagree about a proposition if one is a member of that proposition and the other is not. 

H&R (w1 = @) 
 
D = 0 

H&~R (w2) 
 
D = 1 

~H & R (w3)  
 
D = 1 

~H&~R (w4) 
 
D = 2 
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interest of holding everything except for the increased distance of c’s world fixed, we’ll assume that 
the further world that c invests the larger credence in disagrees with the actual world about all the 
atomic propositions that the closer world does, in addition to at least one other atomic proposition 
(hence making it further).8 Then, what our constraint will require is that b is more accurate than c. 
 Before the official formulation, an example: suppose b distributes its credence as follows: 
 
H&R (w1 = @) 
 
b(w1) = .2  

H&~R (w2) 
 
b(w2) = .5  

~H & R (w3)  
 
b(w3) = .2  

~H&~R (w4) 
 
b(w4) = .1  

 
Now, consider c which is just like b except that the credences in w2 and w4 are swapped, so that c 
is investing the larger credence (0.5) in the more distant world (w4), and the smaller credence (.1) 
in the closer world (w2). 
 
H&R (w1 = @) 
 
b(w1) = .2 
c(w1) = .2 

H&~R (w2) 
 
b(w2) = .5 
c(w2) = .1 

~H & R (w3)  
 
b(w3) = .2 
c(w3) = .2 

~H&~R (w4) 
 
b(w4) = .1 
c(w4) = .5 

 
Proximity 1 requires that b is more accurate than c at @. 
 
Proximity 1 
Let b and c be credence functions defined over a finite set of worlds Ω, where the distance between 
worlds in Ω is given by the disagreement metric. Let wa be any world in Ω and suppose that the 
multiset {b(w)|w ∈ Ω} can be mapped one-to-one onto the multiset {c(w)|w ∈ Ω}by the function 
F as follows:  
 

i. If b(w) = c(w) then F(b(w)) = c(w) 
ii. If b(w) ≠ c(w) then for some world w*, F(b(w)) = c(w*) and F(b(w*)) = c(w) and the following 

conditions are satisfied: 
a. The distance between w* and wa differs from the distance between w and wa 

                                                
8 The necessity of and motivation for this condition will be discussed further in sections 5 and 6. 
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b. b and c’s credences are swapped between w and w*, with b investing the larger 
credence in the closer world (to wa) and the smaller credence in the further world.   

c. The further of the two worlds (w and w*) from wa disagrees with wa about all the 
atomic propositions that the closer of the two worlds disagrees with wa about, in 
addition to disagreeing with wa about at least one other atomic proposition (hence 
making it further). 

Then b is at least as accurate as c at wa, and if (ii) holds for at least one w ∈ Ω, b is more accurate 
than c at wa.  
 
 A strictly proper inaccuracy measure based on the much-loved “Brier score” satisfies 
Proximity 1.   

To measure the local Brier inaccuracy of a credence c in a proposition P, we take the 
difference between c and the truth value of P and square it.   
 
Il-brier(c, 1) = (1-c)2 
Il-brier (c, 0) = (0-c)2 = c2 
 
Recall that the global inaccuracy of a credence function c is a weighted sum of the local inaccuracy 
scores that c receives for each proposition that c assigns credence to.  Let’s call the weights λi. Where 
w(Pi) is the truth value of a proposition Pi at world w, the global Brier inaccuracy of a credence 
function c at a world w is: 
 
Ig-brier(c, w) = ∑ λi Il-brier (c(Pi), w(Pi)) 
                     i 
 
For a space of worlds where the distance between worlds is given by the disagreement metric, what 
I’ll call the “atomic Brier score” is the global Brier score that gives equal weight to all the atomic 
propositions and no weight to any other propositions.   
 
Lemma: 
The atomic Brier score satisfies Proximity 1.  The proof is in the appendix. 
 
The more general result applies not just to the atomic Brier but to any atomic inaccuracy measure 
(an inaccuracy measure that gives equal weight to all the atomic propositions an no weight to any 
other propositions) derived from a local inaccuracy measure which satisfies the following 
constraints: 
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TRUTH DIRECTEDNESS: For all r ∈ [0,1], Ilocal(r, 0) is a strictly increasing function of r. 
 

SYMMETRY: For all r ∈ [0,1], Ilocal(r,0) = Ilocal(1-r, 1) and Ilocal(r, 1) = Ilocal(1-r, 0) 
 
Result 1: 
Every global atomic inaccuracy measure derived from a local inaccuracy measure that satisfies 
TRUTH DIRECTEDNESS and SYMMETRY satisfies Proximity 1.  The proof is in the appendix. 

 
At this point what we have is a verisimilitude-valuing constraint across spaces of worlds 

where distance between worlds is given by the disagreement metric that proper inaccuracy 
measures can satisfy. We get this result by letting our inaccuracy measure privilege exactly those 
propositions that are distance-determining: the atomic ones.   

Note: In Result 1 and the results that follow I’ll be looking at weighted inaccuracy measures 
that assign all their weight to a certain class of privileged propositions. In the real world, we 
presumably care at least a bit about accuracy with respect to every proposition.  I suspect that many 
of my results will go through so long as the privileged propositions are weighted more heavily than 
the others, but this is a topic for future research. 
 
4.2. The Second Result: Proximity 2 

Let’s now consider a different sort of metric, what we’ll call “the magnitude metric.”  On 
the magnitude metric, the distance between two worlds is given by the difference in the magnitude 
of some quantity between those worlds. For example, the quantity might be the number of planets. 
Pretending that the actual world is one in which there are 3 planets, and letting D represent distance 
to the actual world, our space of worlds might look like this:   
 

w1: 1 planet 
 
D = 2 

w2: 2 planets 
 
D = 1  

w3 = @: 3 
planets 

w4: 4 planets 
 
D = 1 

w5: 5 planets 
 
D = 2 

 
We can apply Proximity 1 to the magnitude metric by noting that the magnitude metric is also a 
disagreement metric.  Let wi be the world where the value of the quantity in question is i. The 
distance between wi and wj on the magnitude metric is equal to the number of disagreements 
between wi and wj with respect to a certain class of propositions.  Which propositions?  We can use 
what I’ll call the “at most” propositions, what I’ll call the “at least” propositions, or both. The “at 
most propositions” are propositions of the form “there are at most m of quantity Q” and the “at 
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least propositions” are propositions of the form “there are at least m of quantity Q.”9  By using 
these as our privileged propositions, the magnitude metric will satisfy a constraint very similar to 
Proximity 1.  Once again, the idea is to offer a constraint that says holding all else fixed the more 
verisimilar credence function is more accurate.  In this case our constraint says roughly that if the 
only difference between b and c is that there’s a credal swap between two worlds, with b investing 
the larger credence in the closer world, and both worlds are “on the same side” of the actual world 
(the importance of “same-sidedness” will be discussed later) b will be more accurate.  So, for 
example, if b and c are as follows: 
 

w1: 1 planet 
b(w1) = .4 
c(w1) = .4  

w2: 2 planets 
b(w2) = .2 
c(w2) = .2  

w3 = @: 3 
planets 

w4: 4 planets 
b(w4) = .3 
c(w4) = .1 

w5: 5 planets 
b(w5) = .1 
c(w5) = .3  

our constraint will require that b is more accurate than c. 
   
Proximity 2 

Let b and c be credence functions defined over a finite set of worlds Ω, where the distance between 
worlds in Ω is given by the magnitude metric. Let wa be any world in Ω and suppose that the 
multiset {b(wi)|wi ∈ Ω} can be mapped one-to-one onto the multiset {c(wi)|wi ∈ Ω}by the function 
F as follows:  
 

i. If b(wi) = c(wi) then F(b(wi)) = c(wi) 
ii. If b(wi) ≠ c(wi) then for some world wj, F(b(wi)) = c(wj) and F(b(wj)) = c(wi) and the following 

conditions are satisfied: 
a. The distance between wj and wa differs from the distance between wi and wa. 
b. b and c’s credences are swapped between the two worlds (wi and wj), with b 

investing the larger credence in the closer world (to wa) and the smaller credence 
in the further world (from wa).   

c. i and j are both greater than a, or i and j are both less than a.  

                                                
9 Here’s why this works: On the magnitude metric, for any x and y, the distance between wx and wy is |y-x|.  The 
propositions amongst the at-most propositions that wx and wy will disagree about are all and only propositions of the 
form “there are at most i of quantity Q” with x<i<y.  There are |y-x| such propositions.  So the distance between 
any two worlds on the magnitude metric is just the distance between any two of those worlds on the disagreement 
metric, where the atomic propositions are the at-most propositions.  A similar argument can be made for at least 
propositions.  If we wanted to use both types of propositions, that would work as well, so long as we’re happy with a 
variant of the magnitude metric according to which the distance between wx and wy is 2(|y-x|).  I think we should 
regard the magnitude metric and this variant as equivalent for the purposes at hand. 
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Then b is at least as accurate as c at wa, and if (ii) holds for at least one wi ∈ Ω, b is more accurate 
than c at wa.  
 
Result 2 
Every global inaccuracy measure which assigns equal weight to all the at-most propositions and no 
other propositions, all the at-least propositions and no other propositions or both the at-most and 
at-least propositions and no other propositions, and which is derived from a local inaccuracy 
measure that satisfies TRUTH DIRECTEDNESS and SYMMETRY satisfies Proximity 2. The proof is 
in the appendix. 
 
5. The Bad and the Ugly  
 So far we’ve established that, for at least certain metrics (the ones Oddie considers), we can 
construct proper inaccuracy measures with the feature that, holding all else fixed, the more 
verisimilar credence function will be more accurate.  But you might have wanted more.  Consider 
once again this space of worlds, with b and c distributed as follows: 
 

w1: 1 planet 
b(w1) = 0.91 
c(w1) = 0.91 

w2: 2 planets 
b(w2) = 0.03 
c(w2) = 0.01 

w3 =@:3 planets w4: 4 planets 
b(w4) = 0.05 
c(w4) = 0.05  

w5: 5 planets 
b(w5) = 0.01 
c(w5) = 0.03  

 
Notice that the only difference between b and c is that b and c swap credences between w2 and w5, 
with b investing the larger credence in the closer world.  It seems like we’re holding an awful lot 
fixed, and just varying verisimilitude, and so it seems like a verisimilitude valuing accuracy measure 
should rate b as more accurate than c.  However, on the weighted Brier score which assigns equal 
weight to the at-most and at-least propositions and no weight to any other propositions, c is actually 
more accurate than b.  (Note that this isn’t a counterexample to Proximity 1 or Proximity 2 because 
condition (ii) (c) of both constraints is not satisfied for w2 or w5). 
 Why is this happening?  This is where things get a bit ugly.   Even though b invests more 
credence in closer worlds, what c has going for it is that c has clumped the largest and the smallest 
credences together on one side of the actual world (.91 and .01), and the remaining two medium 
credences (0.03, 0.05) on the other. 
 Why on earth should this difference in clumping be relevant to accuracy?  The real answer 
comes later, but here’s the quick answer: If you care about certain propositions more than others, 
then you should expect clumping to matter: If being wrong about some proposition A is worse than 
being wrong about some proposition B, then credence functions that clump a bunch of credence 
in wrong-about-A worlds, are going to do worse than credence functions that divide up that same 
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amount of credence between wrong-about-A worlds and wrong-about-B worlds.  So privileging 
certain propositions means caring about clumping.   

That being said, a feature of certain improper scoring rules (scoring rules that aren’t proper) 
is that, holding fixed the amount of credence invested in the actual world, the more verisimilar 
credence function is always more accurate.  In other words: if b and c invest equal credence in the 
actual world and b is more verisimilar, there is no other feature of the credal clumping that could 
make c as accurate or more accurate than b.  The following constraint formalizes this idea: 
 
Proximity 310 
Suppose that b and c are credence functions defined over a finite set of worlds Ω, that wa ∈ Ω and 
that b and c invest equal amount of credence in wa. 
For distance d, let Xd be the proposition (set of worlds) consisting of all and only worlds that are 
at least d units away from wa: Xd = {w in Ω | D(w, wa) > d}. 
If for all propositions Xd, b(Xd) < c(Xd), but for some Xd, b(Xd) < c(Xd) then b is more accurate 
than c at wa. 

 
No version of the weighted Brier score satisfies Proximity 3.11  But there are improper measures 
that satisfy Proximity 3.  One is based on what’s sometimes called “the absolute value” score: 

The local absolute-value-inaccuracy (henceforth “abv-inaccuracy”) of a credence c in a 
proposition P, is the absolute value of the difference between c and the truth value of P. 
 
Il-abv(c, 1) = |1 – c|=1 – c 
Il-abv (c, 0) =|0 – c| = c 
 
The weighted absolute value score over a space of worlds Ω is a global inaccuracy measure that is 
a weighted sum of the local abv-inaccuracy scores that a credence function gets for each 
proposition. 
 

                                                
10 Thanks to [omitted] for help formulating this constraint. 
11 Oddie’s proof of Theorem 1 (p.23-24) in an unpublished version of the paper establishes that no weighted Brier 
score can satisfy his proximity principle, but the proof can also be used to show that no weighted Brier score can satisfy 
Proximity 3.  I have not established that no proper score will satisfy Proximity 3, but I’m not optimistic that we’ll find 
a Proximity-3-satisfying proper inaccuracy measure.  Unlike Oddie’s constraint, Proximity 3 does allow the inaccuracy 
measure to care about features of a distribution other than verisimilitude and the amount of credence invested in the 
actual world, but these other features will only get to play a role as a tie-breaker: when the two credence functions in 
question invest equal credence in the actual world and are doing equally well with respect to verisimilitude, then some 
other feature might make a difference. Proper measures, however, tend to care about features of a distribution (like it’s 
evenness) in a stronger-than-tie-breaking fashion. 
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Result 3 
When distance between worlds in Ω is given by the disagreement metric, the weighted absolute 
value score which assigns equal weight to all the atomic propositions and no other propositions 
satisfies Proximity 3. The proof is in the appendix. 
 
Corollary 
When distance between worlds in Ω is given by the magnitude metric, the weighted absolute value 
score which assigns equal weight to all the at-most propositions and no other propositions, all the 
at-least propositions and no other propositions, or both the at-most and at-least propositions and 
no other propositions satisfies Proximity 3.   
 
Proof of Corollary 
We noted earlier that the magnitude metric is just an instance of the disagreement metric with the 
atomic propositions being the at-least propositions, the at-most propositions, or both.  Thus, the 
corollary follows immediately from Result 3. 
 
6. A Bit More Good: The Role of Evenness of Distribution 
 We saw above that the weighted Brier score doesn’t satisfy Proximity 3.  Worse than that, 
as illustrated by the example in the previous section, on the weighted Brier score we’ve been 
working with, there are cases in which two credence functions distribute the very same multiset of 
credences amongst a set of non-actual worlds, b invests more credence in closer worlds, yet c is 
more accurate.  This can happen because the weighted Brier score is sensitive to how these 
credences are clumped amongst the propositions that we care about.  And unlike the absolute value 
score, verisimilitude is not the only clumping feature that’s important.  The good news is that we 
can articulate exactly what other clumping feature our Brier score cares about, and show that 
holding that feature fixed, the more verisimilar credence function is more accurate. 
 What is this special feature?  I hinted at it in an earlier section: in general, proper scoring 
rules care about how evenly credence is distributed amongst falsehoods.  Even before we get into 
the business of privileging certain propositions over others, we can note that, on a proper 
inaccuracy measure, a credence function that assigns .5 to non-actual-world 1, and .5 to non-
actual-world 2, will be more accurate than a credence function that assigns credence 1 to a single 
non-actual world.  According to proper inaccuracy measures, it’s better to hedge. 
 But notice that we can’t explain why c is more accurate in the example above by appealing 
to the claim that c distributes its credence in (non-actual) worlds more evenly than b does.  The 
distributions over non-actual worlds for both b and c contain exactly the same credences!  However, 
once we privilege certain propositions, what matters is how evenly credence in distributed in the 
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falsehoods concerning the privileged propositions.  And, in fact, c does distribute its credence more evenly 
than b in the falsehoods concerning the privileged propositions.  But to convince you of this, and 
of the fact that evenness of distribution explains why c does better, we need to formalize the notion 
of “evenness of distribution.”  

We can follow information-theorists here and think of the evenness of a credal distribution 
as the entropy of that distribution, where entropy is a measurement of how much information the 
distribution contains.  Intuitively, the more evenly credence is distributed over a set of worlds, the 
less informative that distribution is (you have no idea how things will turn out) whereas if one world 
gets assigned maximal credence, that distribution is maximally informative.   
 The most common measure of entropy in information theory is Shannon entropy.  Here’s 
how it works: consider some credence function c and consider the most fine-grained propositions 
(the worlds) that c is distributed over: {w1…wn}.  Let c(wi) = ci.  The Shannon Enropy of c is given 
by the following formula: 
                                            n 

 Eshannon(c) = -∑ci log(ci)  
                                           i=1 

There are some interesting connections between entropy and accuracy that will be important for 
our purposes.   

Let cf be c restricted to the most fine-grained propositions that c is distributed over.  (So 
while c might assign some credence to the proposition {w1, w2}, cf would only assign credence to 
{w1} and {w2} individually). The first thing to note is that Eshannon(c) also represents how inaccurate 
cf expects itself to be using the log inaccuracy measure:12 an inaccuracy measure that assigns the 
score log(c) to a credence of c in a falsehood. So we can think of the Shannon entropy of c as cf’s 
expected inaccuracy relative to itself (where the global inaccuracy of cf is the average of the local 
inaccuracy scores of cf).  Intuitively, this notion corresponds with “evenness” because the more 
opinionated a credence function is (the more uneven), the more accurate it will expect itself to be. 
(In the extreme case, the maximally opinionated distribution is certain that it will get the maximal 
accuracy score).   

We can define different entropy (“evenness”) measures using different inaccuracy measures.  
So, for example, we can define the Brier entropy of c as the expected inaccuracy of cf relative to 
itself, according to the (evenly weighted) Brier score.  This equals:13  

 

                                                
12 Grunwald and Dawid (2004).    
13 Thanks to [omitted] for pointing this out to me.  Here’s the proof he provided: ∑ciIg-brier(cf,wi) = ∑ci(c12+c22+…ci-

12+(1-ci)2+ci+12+…cn2] = ∑ci(1-2ci+∑ci2) = ∑ci-2∑ci2+∑ci∑ci2.  Since ∑ci = 1, this equals 1-2∑ci2+∑ci2= 1-∑ci2.  Since 
(∑ci)2 = 1, this equals 1-[∑ci2/(∑ci)2]. The equality also holds for credences distributed over a proper subset of Ω and 
so not summing to one.  Simply let K = ∑ci.  Then we can define c+(wi) as ci/K to get a normalized version of c and 
calculate the Brier entropy of c+.  This will also yield 1 –[ ∑ci2 /(∑ci)2]. 
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                                       n                                               n              n 

Ebrier(c) = ∑ciIg-brier(cf,wi) = 1 –[ ∑ci2 /(∑ci)2] 
                                                          i=1                                           i=1           i=1 
 
Here’s a neat fact about Brier-entropy: using Brier-entropy to measure evenness is equivalent to 
using Jain’s fairness index,14 a measure used in the distributive justice literature to measure the 
fairness of a distribution of goods.  
 So far this has all concerned evenness of a distribution amongst worlds.  But once we start 
regarding certain propositions as more important than others, what’s relevant is how evenly 
credence is distributed amongst the propositions that contribute to a credence function’s 
inaccuracy.  Suppose we have a weighted-Brier score which assigns equal weight to a set of 
propositions Pi and no weight to any other propositions.  Then we’ll let:  
 

Eweighted-brier(c) = 1- [∑c(Pi)2/(∑c(Pi))2] 
 
Call the propositions Pi and their negations the “privileged propositions.”  Let Fw be the subset of 
the privileged propositions that are false at w.  Call these the “inaccuracy-determining propositions 
at w.” We can now state another proximity constraint that a weighted Brier score can satisfy.  It 
will say that, holding fixed evenness of distribution (as defined by Brier-entropy), amongst the 
inaccuracy-determining propositions at w, the more verisimilar credence function is more accurate at w.15 
 
Proximity 4 
Suppose that b and c are credence functions defined over a finite set of worlds Ω, that wa ∈ Ω, and 
that b and c invest equal amount of credence in wa. Suppose also that b distributes its credence 
amongst the inaccuracy-determining propositions at wa at least as evenly as c as defined by Brier-
entropy. 
For distance d, let Xd be the proposition (set of worlds) consisting of all and only worlds that are at 
least d units away from wa: Xd = {w in Ω | D(w, wa) > d}. 

                                                
14 Originally in Jain et al .(1984).  
15 Note that thinking of the evenness of a multiset of credences invested in the inaccuracy-determining propositions as 
the Brier entropy with respect to those propositions can’t be motivated directly by appeal to the credence function’s 
expected inaccuracy. Since the privileged propositions need not be exclusive, the expected inaccuracy of a credence 
function with respect to these propositions will not equal the Brier-entropy of this set of credences.  That’s okay.  The 
idea is that one way to motivate thinking of the evenness of a multiset of credences as the Brier-entropy of those 
credences is to note that we’d expect evenness and expected inaccuracy to go together when the set of possibilities is exclusive.  
But once we have our measure of evenness we can apply it to credences in propositions that aren’t exclusive as well.  
(And indeed, as Jain does, we can use it to measure the evenness of a distribution of goods which aren’t credences at 
all). 
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If for all propositions Xd, b(Xd) < c(Xd), but for some Xd, b(Xd) < c(Xd) then b is more accurate than 
c at wa. 
 
Result 4 
When distance between worlds in Ω is given by the disagreement metric, the weighted Brier score 
which assigns equal weight to all the atomic propositions and no weight to any other propositions 
satisfies Proximity 4.  When distance between worlds in Ω is given by the magnitude metric, the 
weighted Brier score which assigns equal weight to all the at most propositions and no other 
propositions, all the at least propositions and no other propositions, or both the at-most and at-
least propositions and no other propositions satisfies Proximity 4.  The proof is in the appendix. 
 
 Here’s where we are so far: we’ve seen that on two natural metrics, the weighted Brier score 
can satisfy the following constraint: holding fixed evenness of distribution across the privileged 
propositions, and the amount of credence invested in the actual world, the more verisimilar 
credence function is more accurate.16  Is this good enough?  I address a potential worry in the next 
section. 
 
7. A Bit more Bad: Which Propositions to Privilege? 
 At this point you might think the following: it’s obvious to me that I care about 
verisimilitude, and it’s obvious to me that I care about accuracy.  But I doubt any amount of soul-
searching will reveal in me a special fondness for at-most propositions.  So even if technically we can 
squish the value of verisimilitude into the value of accuracy, this maneuver misrepresents the 
phenomenon.  The phenomenon is that I care about two things: being accurate and being 
verisimilar.  The phenomenon is not that I care about one thing: being accurate about at-most 
propositions. 
 In fact, you might think, a much more natural class of propositions to privilege on the 
magnitude metric would be the set of convex propositions: sets of worlds with no “gaps” like, for 
example: “there are between 5 and 8 planets.”  So one question to ask is: what sort of proximity 
constraints are satisfied if the privileged propositions are the convex propositions rather than the 
at-least or at-most propositions?  There is at least one such constraint: 
 
 

                                                
16 Circling back to the first two proximity constraints we started with, we can now explain why it’s important that, in 
the credal-swaps, the further world disagree with the actual world about all the privileged propositions that the closer 
world does (or that both worlds be on the same side of the actual world): doing so is a way to assure that we don’t 
change how evenly credence is distributed amongst the privileged propositions when we swap the credences. 
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Proximity 5 
Let Ω be a finite space of worlds where distance between worlds is given by the magnitude metric.  
Let wa be a world in Ω and let wa+d and wa-d be two worlds that are d units away from wa.  Suppose 
that b and c are credence functions that invest equal amounts of credence in wa and which are such 
that b distributes its credence at least as evenly among non-wa worlds as c does.  If b invests all of 
its non-wa credence in worlds that are d units away from wa, c invests all of its non-wa credence in 
worlds that are at least d units from wa, and there is some world in which c invests credence that is 
more than d units away from wa, b is less inaccurate than c at wa. 
 
Result 5 
The global Brier score that assigns equal weight to all convex propositions and no weight to any 
other propositions satisfies Proximity 5.  The proof is in the appendix. 
 
This is a nice result about convex propositions.  But it’s a bit misleading.  There are some examples 
which illustrate that the convex-proposition-lover positively defies verisimilitude. 
 
Take this case: 
 

w1=@: 1 planet  w2 : 2 planets 
  

w3: 3 planets 
b(w3) = 0.9 
c(w3) = 0.1  

w4: 4 planets 
b(w4) = 0.1 
c(w4) = 0.9  

 
If all the convex propositions are weighted equally, b and c are equally accurate on the convexly-
weighted Brier score, even though b is clearly doing better with respect to verisimilitude.  
Furthermore, it’s hard to see what other difference between the two credence functions could 
explain why c’s weakness on the verisimilitude front doesn’t make it less accurate.  But note that 
this (for once!) is not propriety’s fault!  The (convexly-weighted) absolute-value score also yields the 
result that b and c are equally accurate.  The problem is not the type of inaccuracy measure we 
use, but the choice to privilege the convex propositions.   
 Here’s the problem with convex propositions: worlds near the middle of the space show up 
in more convex propositions than worlds near the edges.  In the example above, w1 and w4 are 
each members of four convex propositions, whereas w2 and w3 are each members of six convex 
propositions.    This means that if the actual world is near one edge, and you care about convex 
propositions, then you want to invest your non-actual-worldly-credence in worlds that are either 
close to the actual world (for verisimilitude reasons) or near the opposite edge – very far from the 
actual world (because those worlds won’t show up in many propositions). In this particular case, 
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the fact that w3 is more verisimilar perfectly balances the fact that w4 shows up in fewer propositions 
and this explains why b and c are equally accurate.17   
 If you still find yourself attached to convex propositions, let me make two further potentially 
assuaging remarks.  First, if you like convex propositions, you can take some comfort in the fact 
that every convex proposition is a conjunction of an at-least and at-most proposition.  It’s just that 
by taking the at-least and at-most propositions instead of the convex ones as privileged doesn’t have 
the unfortunate consequence that worlds near the middle get counted more than worlds near the 
edge.  At-least and at-most propositions are egalitarian: each world shows up in the same number 
of propositions. 
 Second, I imagine that the temptation to think that convex propositions are especially 
important comes from the natural thought that propositions of the form “there are about x planets” 
are important.  And you might think that the convex propositions are simply propositions 
expressing different “there are about x planets” propositions. But that’s not right. For it’s natural 
to think of “there are about x planets” propositions as propositions of the form “there are x, plus 
or minus y planets.”  This is not the set of convex propositions: the convex proposition {w2, w3}, 
for example, is not a member of this set.  And b is, in fact, more accurate than c with respect to the 
“there are x, plus or minus y planets” propositions on the weighted Brier, as we’d expect.   
 Here’s the more general methodological point: The project is to see whether we can find 
some propositions, which intuitively are important, and some distance relation between worlds, 
which intuitively seems right, and show that privileging those propositions will amount to caring 
about verisimilitude as defined by that distance relation. It may turn out that we need to do a bit 
of massaging to get this to work. So insofar as soul-searching revealed in you a preference for 
convex propositions, my proposal is that your soul-searching ever so slightly missed the mark in 
terms of what features of credence functions you value.  You don’t presumably think it’s great to 
invest your non-actual-worldly credence in a very distant world just because that world is near an 
edge, so, it turns out, it’s not actually being right about convex propositions that you care about.  
 One final note: which propositions we care about will plausibly vary from context to 
context.  If you’re hosting a party and trying to figure out how many chairs you need, you may 
care a lot about propositions like “at most 15 people will come” or “about 15 people will come.” 
If, however, you’re trying to figure out whether to play a game at your party that will require people 
to be paired up, you may care more about propositions like “an even number of people will come.”  
Relative to your game-planning goal, the metric shouldn’t be the magnitude metric: the world in 
which 10 people come should be regarded as more similar to the world in which 12 people come, 

                                                
17 I believe that the reason Proximity 5 gets around this problem is that the conditions under which the constraint 
applies have the feature the closer the actual world is to one edge, the further from the middle are the worlds in which 
b invests its credence.   
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than to the world in which 11 people come.  We can still use a disagreement metric for these 
purposes (let the atomic proposition be “an even number of people will come) and so the results in 
this paper will still apply. The point here is that there’s no problem incorporating the thought that 
different propositions matter to different degrees in different contexts – the relevant metric will 
change as the importance of propositions changes.  So long as we can capture the resulting metric 
as a disagreement or magnitude metric, everything I’ve said so far will apply.  If the metric is more 
complicated, which in many real-world cases it likely is, I have not proven that propriety and 
verisimilitude valuing are compatible (nor has Oddie shown them to be incompatible).  But as I 
said in the introduction, my hope is to have convinced you that there’s no reason to expect 
otherwise.  There’s no inherent tension between propriety and verisimilitude. 
 
8. Some Concluding Thoughts: Accuracy and Practical Value 
 Being close to right and being kind of right are both things that matter to us.  Ideally, we 
can have accuracy measures that capture both of these values.  Oddie argued that proper measures 
will fail to do so.  I’ve argued otherwise: proper measures can capture the value of verisimilitude by 
privileging certain propositions over others.  The key difference between proper and improper 
measures on the verisimilitude front is that proper measures care about features of the way 
credence is distributed amongst non-actual worlds that aren’t just verisimilitude related.  They also 
care about evenness of distribution and, in particular, they care about how evenly credence is 
distributed amongst the inaccuracy-determining propositions.  Indeed, holding fixed the amount 
of credence invested in the actual world, the weighted Brier score cares about just two things: 
verisimilitude and evenness across the inaccuracy-determining propositions (this follows from 
Result 4), whereas, holding fixed the amount of credence invested in the actual world, the weighted 
absolute value score just cares about verisimilitude.   

At this point the question naturally becomes: are there good reasons to care about evenness 
of distribution?  Dunn (forthcoming) has argued that there are. I agree with Dunn and I want to 
add one more reason to the list of reasons we might care about evenness: from a practical 
perspective, you’re better off having your credences in falsehoods more evenly distributed.  More 
precisely: suppose S has a certain amount of credence that she’s going to invest in the false 
propositions P and Q that she may have to bet on.  Suppose we (who know that P and Q are both 
false) don’t know what sorts of bets S will face: we have a uniform distribution over the possible 
odds. A result from Schervish (1989) (which has been explicated in extremely helpful ways by 
Levinstein (2017) and Gibbard (2008)) implies that S is better off dividing whatever sum of credence 
she is investing in these falsehoods as evenly as possible.  Why?  Because (given our ignorance of 
which bet she’ll face) the expected amount of money she will lose from having credence x in P (a 
false proposition) is x2/2 (see Levinstein (2017)) and the expected amount of money she will lose 
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from having credence y in P is y2/2.  Thus, holding x+y fixed, the quantity that S will want to 
minimize is x2+y2.  x2+y2 is minimized when x and y are maximally evenly distributed, as defined 
by Brier entropy.18  So it’s no coincidence that we care about evenness: we’ll expect agents that 
distribute more evenly to do better practically. 

But agents who are more verisimilar will also do better practically so long as we assume 
that the privileged propositions are the ones that agents are more likely to find themselves betting 
on (in the broadest sense of “betting”).  Take the weather example we started with: if you’re more 
likely to go a store that sells umbrellas (which are useful when it rains) than to go to a store that 
sells objects that are useful in circumstances in which “it rains if and only if it’s not hot,” then, all 
else equal, we’ll expect the more verisimilar agent to do better practically.   

The weighted Brier score (amongst its many other virtues!) does a good job at capturing 
the features that will matter to us practically. For holding fixed the amount of credence invested in 
the actual world, the weighted Brier score cares about only two other things: verisimilitude, and 
evenness with respect to the privileged propositions (as defined by Brier entropy). Evenness and 
verisimilitude are also exactly the features of a distribution in non-actual worlds that are important 
practically, when we’re completely ignorant about which sorts of decisions we’ll face.   
 
Appendix 
 
(Note: The Proximity constraints referred to in the results get stated in the course of the proofs) 
 
Lemma 
 
The atomic Brier score satisfies Proximity 1 
 
Proof of Lemma 
 
Let b and c be credence functions defined over a finite set of worlds Ω, where the distance between 
worlds in Ω is given by the disagreement metric. Let wa be any world in Ω and suppose that the 
multiset {b(w)|w ∈ Ω} can be mapped one-to-one onto the multiset {c(w)|w ∈ Ω}by the function 
F as follows:  
 

i. If b(w) = c(w) then F(b(w)) = c(w) 
ii. If b(w) ≠ c(w) then for some world w*, F(b(w)) = c(w*) and F(b(w*)) = c(w) and the following 

conditions are satisfied: 
a. The distance between w* and wa differs from the distance between w and wa 
b. b and c’s credences are swapped between w and w*, with b investing the larger 

credence in the closer world (to wa) and the smaller credence in the further world. 

                                                
18 For recall, Brier entropy in this case would equal 1-[(x2+y2)/(x+y)2], so holding fixed the value of x+y, maximizing 
evenness amounts to the same thing as minimizing x2+y2.   
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c. The further of the two worlds (w and w*) from wa disagrees with wa about all the 
atomic propositions that the closer of the two worlds disagrees with wa about, in 
addition to disagreeing with wa about at least one other atomic proposition (hence 
making it further). 

 
We’ll show that on the weighted Brier score which assigns equal weight to all the atomic 
propositions and no weight to any other propositions, b is at least as accurate as c at wa, and if (ii) 
holds for at least one w ∈ Ω, b is more accurate than c at wa. 
 
Let the falsehoods concerning the atomic propositions at wa be {P1…Pm}. (In other words, if the 
atomic propositions are {A1…Am}, then if wa ∈ Ai, Pi = ~Ai, and if wa ∉ Ai then Pi = Ai).  The 
inaccuracy of b at wa on the weighted Brier score is just the sum of the inaccuracy of b with respect 
to the Pi.19 
 
Now, for any such proposition Pi, consider those worlds w in Pi such that b invests a larger credence 
in w than c does.  Call these worlds wi1…wim (the i is just a reminder that we’re listing worlds that 
are members of Pi).   
 
So we have that for j∈ {1…m}, b(wij)>c(wij). 
 
We know that for any such wij, there exists a partner world, which we’ll call, wij* such that wij* is 
further from w than wij is, and which is such that b(wij) = c(wij*), and c(wij) = b(wij*).  Now note that 
wij* is also a member of Pi.  Why?  Because wij* is the further of the two partners from wa, and we’ve 
stipulated that the further world disagrees with wa about all the atomic propositions that the closer 
world disagrees with wa about.  Since wij ∈ Pi but wa ∉ Pi, wij* must be a member of Pi as well. 
 
Now we’ll order the worlds that are members of Pi as follows: first will come the pairs of worlds, 
wij, wij*, where b(wij) > c(wij), and then will come all the remaining worlds which will be such that 
b(wij) < c(wij) 
 
So: 
 
Il-brier(b(Pi), wa(Pi)) = [b(wi1)+b(wi1*)+…b(wim)+b(wim*)+b(wi(m+1))+…b(wi(m+n))]2 

 
For j∈ {1…m} we can swap b(wij) with c(wij*) and b(wij*) with c(wij).  So b’s inaccuracy with respect 
to Pi: 
 
                                    =  [c(wi1*)+c(wi1)+…c(wim*)+c(wim)+b(wi(m+1))+…b(wi(m+n))]2 

 
And recalling that, by construction of our ordering, for all j ∈ {m+1…m+n} b(wij) < c(wij), we have 
that the inaccuracy of b(Pi) at wa is  
 
                                   <  [c(wi1*)+c(wi1)+…c(wim*)+ c(wim)+c(wi(m+1))+…c(wi(m+n))]2 = I(c(Pi), wa(Pi)). 
 
So, for all Pi, the inaccuracy of b is less than or equal to the inaccuracy of c on the weighted Brier.   
                                                
19 Note that I’m relying here to the fact that the Brier score is symmetric. 
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Suppose now that for some world w ∈ Ω condition (ii) obtains and b(w) ≠ c(w).  Then there exists a 
partner world for w, w*, such that b and c swap credences between these worlds with b investing 
the larger credence in the closer world. Without loss of generality, suppose w* is the further world.  
Then w* disagrees with wa about all the atomic propositions that w disagrees with wa about in 
addition to at least one other atomic proposition.  So let Pz be a falsehood concerning an atomic 
proposition such that w* ∈ Pz but w ∉	Pz.   
 
Let’s now think about b’s inaccuracy with respect to Pz.  As before we can express b’s Pz-inaccuracy 
as: 
 
Il-Brier(b(Pz), wa(Pz) = [b(wz1)+b(wz1*)+…b(wzm)+b(wzm*)+b(wz(m+1))+…b(wz(m+n))]2 

 
Since w* ∈ Pz 
 
w* ∈ {wz1, wz1*…wzm, wzm*, wz(m+1)…wz(m+n)}. 
 
Note that w* ∉ {wz1, wz2…wzm}.  This is because, for all wzj where j∈ {1…m}, b(wzj) > c(wzj).  
However, since w* is the further world of {w, w*}, and b invests the smaller credence in the further 
world b(w*)<c(w*). 
 
Note also that w* ∉ {wz1*, wz2*…wzm*}.  For the wzj* are all partners of the wzj worlds.  This means 
that if w* = wzj* for some j ∈ {1…m}, then w*’s partner would be wzj for some j∈ {1…m}.  But 
w*’s partner is w, and since w (by assumption) is not a member of Pz, w can’t equal any such wzj.    
 
It follows that w* ∈ {wz(m+1)…wz(m+n)}. 
 
Since we know that b(w*) < c(w*) (w* is the further world) it follows that for some wzj ∈ 
{wz(m+1)…wz(m+n)}, b(wzj) < c(wzj).   
 
Since for all j∈ {m+1…m+n}, b(wzj)<c(wzj) and for some j∈ {m+1…m+n}, b(wzj) < c(wzj) it 
follows that: 
 
b(wz(m+1))+b(wz(m+2))+…b(wz(m+n)) < c(wz(m+1))+c(wz(m+2))+…c(wz(m+n)) 
 
Returning to b’s inaccuracy with respect to Pz, we have:  
 
I(b(Pz), wa(Pz) = [b(wz1)+b(wz1*)+…b(wzm)+b(wzm*)+b(wz(m+1))+…b(wz(m+n))]2 

 
                        =[c(wz1*)+c(wz1)+…c(wzm*)+c(wzm)+ b(wz(m+1))+…b(wz(m+n))]2 

   
                        < [c(wz1*)+c(wz1)+…c(wzm*)+c(wzm)+c(wz(m+1))+…c(wz(m+n))]2= I(c(Pz), wa(Pz)). 
 
Since for all Pi, b’s inaccuracy with respect to Pi is less than or equal to c’s, but for some Pi, b’s 
inaccuracy is less than c’s, it follows that b is less inaccurate than c at wa on the weighted-Brier. 
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Result 1 
 
Every global atomic inaccuracy measure derived from a local inaccuracy measure that satisfies 
TRUTH DIRECTEDNESS and SYMMETRY satisfies Proximity 1.   
 
Proof of Result 1 
 
Let g be a strictly increasing function representing the local inaccuracy of a credence in a falsehood 
and let this local inaccuracy measure satisfy SYMMETRY.20 Then, in the proof of the lemma above, 
simply substitute any expression of the form […]2 with g[…].   
 
Result 2 
 
Every global inaccuracy measure which assigns equal weight to all the at-most propositions and no 
other propositions, all the at-least propositions and no other propositions or both the at-most and 
at-least propositions and no other propositions, and which is derived from a local inaccuracy 
measure that satisfies TRUTH DIRECTEDNESS and SYMMETRY satisfies Proximity 2.  
 
Proof of Result 2 
 
Let b and c be credence functions defined over a finite set of worlds Ω, where the distance between 
worlds in Ω is given by the magnitude metric. Let wa be any world in Ω and suppose that the 
multiset {b(wi)|wi ∈ Ω} can be mapped one-to-one onto the multiset {c(wi)|wi ∈ Ω}by the function 
F as follows:  
 

i. If b(wi) = c(wi) then F(b(wi)) = c(wi) 
ii. b(wi) ≠ c(wi) and there is some world wj, such that the following conditions are satisfied: 

a. The distance between wj and wa differs from the distance between wi and wa. 
b. b and c’s credences are swapped between the two worlds (wi and wj), with b 

investing the larger credence in the closer world (to wa) and the smaller credence in 
the further world (from wa).   

c. i and j are both greater than a, or i and j are both less than a.  
 
We’ll show that on a weighted global score which assigns equal weight to the at-most propositions 
(propositions of the form “there are most m of quantity Q”) and no others, the at-least propositions 
(propositions of the form “there are at least m of quantity Q”) and no others, or both, and which 
is derived from a local score that satisfies TRUTH-DIRECTNESS and SYMMETRY, b is at least as 
accurate as c at wa. If condition (ii) holds for some wi ∈	Ω, b is more accurate than c at wa.  This will 
follow from Result 1, and from the fact that we can think of the magnitude metric as a kind of 
disagreement metric. 

First, note that the distance between any two worlds on the magnitude metric is equal to 
the distance between any two worlds on a disagreement metric on which the atomic propositions 
are the at-most propositions (see note 9 in the main text). 

Second, note is that if x and y are both greater than a or both less than a (graphically: wx 
and wy are both to the right or both to the left of wa), then the further of {wx, wy} to wa disagrees 
                                                
20 Note 19 explains the role that SYMMETRY plays in the proof. 
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with wa about all of the at-most propositions that the closer world disagrees with wa about.  Why?  
Suppose x and y are both greater than a and, without loss of generality, let x<y. Then wx and wa 
disagree with one another about all propositions of the form “there are at most i of quantity Q” 
when a<i<x.  Similarly, wy and wa disagree with one another about all propositions of the form 
“there are at most i of quantity Q” when a<i<y.  Because y>x, for every i such that a<i<x, it is also 
true that a<i<y.  Thus, if x and y are both greater than a, every at-most proposition that wa and 
wx disagree about is a proposition that wa and wy disagree about.  Parallel reasoning shows that the 
same holds if wx and wy are both less than a.   
 Because the magnitude metric is equivalent to the disagreement metric with the atomic 
propositions being the at-most propositions, it follows from Result 1 that any global inaccuracy 
measure that satisfies TRUTH-DIRECTEDNESS and SYMMETRY, and which takes as privileged the 
at-most propositions satisfies Proximity 2.  Similar reasoning applies to measures that take as 
privileged the at-least propositions, and measures that take both the at-most and the at-least 
propositions as privileged. 
 
Result 3 
 
When distance between worlds in Ω is given by the disagreement metric, the weighted absolute 
value score which assigns equal weight to all the atomic propositions and no other propositions 
satisfies Proximity 3.  
 
Proof of Result 3 
 
Suppose that b and c are credence functions defined over a finite set of worlds Ω: {w1…wn} where 
distance between worlds is given by the disagreement metric and suppose that b and c invest equal 
amounts of credence in wa (a world in Ω).  For distance d, let Xd be the proposition consisting of 
all and only worlds that are at least d units away from wa: 
 
Xd = {w in Ω | D(w, wa) > d}. 
 
We’ll show that on the weighted absolute value score, which assigns equal weight to all the atomic 
propositions and no weight to any other propositions, the following holds: 
 
If for all propositions Xd, b(Xd) < c(Xd), but for some Xd, b(Xd) < c(Xd) then b is more accurate than 
c at wa. 
 
Let the falsehoods concerning the atomic propositions at wa be {P1…Pm}. (In other words, if the 
atomic propositions are {A1…Am}, then if wa ∈ Ai, Pi = ~Ai, and if wa ∉ Ai then Pi = Ai).  The 
inaccuracy of b at wa on the weighted absolute value score is just the sum of the inaccuracy of b 
with respect to the Pi:21 
         
                            m 
Iweighted-abv(b, wa) = ∑ b(Pi)  
                           i = 1          
 
 
                                                
21 Note that I’m relying here to the fact that the absolute value score is symmetric. 
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Since b(Pi) = ∑b(w) 
                              w∈Pi                                   
 
                            m                   m 
Iweighted-abv(b, wa) = ∑ b(Pi) = ∑  ∑ b(w) 
                                        i = 1                i=1 w∈Pi 
 
 
Now take any world w ∈ Ω.  Let D(w, wa) = dw 
Since w is dw units away from wa, w disagrees with wa about dw atomic propositions.  This means 
that b(w) will show up dw times in: 
 
m              
∑  ∑ b(w) 
i=1 w∈ Pi 
 
- once for each Pi that w is a member of. 
 
More generally, then, we can say that 
 
 Iweighted-abv(b, wa) = ∑ b(w)D(w, wa) 
                           w∈Ω  
 
Now recall that we’re assuming that for all Xd (where Xd is the proposition consisting of worlds d 
or more units away from wa) b(Xd) < c(Xd).  So, where Δ is the furthest distance any world is from 
wa, we know that 
 
Δ                     Δ  
∑b(Xd) < ∑c(Xd) 
i=1                 i=1 
 
Now note that if a world is 1-unit away from wa, it will show up in exactly one Xd proposition 
(where d ranges between 1 and Δ), namely X1 – the proposition consisting of worlds 1 or more 
units away.  A world 2 units away from wa will show up in exactly two such Xd propositions: namely 
the proposition consisting of worlds that are at least one unit away (X1), and the proposition 
consisting of worlds that are at least two units away (X2). In general, for any w, if D(w,wa) = δ, then 
b(w) will show up in δ of the Xd propositions, with d ranging between 1 and Δ.   
 
So: 
  
Δ  
∑b(Xd) = ∑b(w)D(w, wa) = Iweighted-abv(b, wa) 
i=1           w∈Ω  
 
For the same reason, 
 
Δ  
∑c(Xd) = ∑c(w)D(w, wa) = Iweighted-abv(b, wa) 
i=1           w∈Ω  
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Since: 
 
Δ                     Δ  

∑b(Xd) < ∑c(Xd), 
i=1                 i=1 
 
it follows that 
 
Iweighted-abv(b, wa) < Iweighted-abv(c, wa) 
 
If the inequality is strict, strict inequality follows. 
 
Result 4 
 
When distance between worlds in Ω is given by the disagreement metric, the weighted Brier score 
which assigns equal weight to all the atomic propositions and no weight to any other propositions 
satisfies Proximity 4.  When distance between worlds in Ω is given by the magnitude metric, the 
weighted Brier score which assigns equal weight to all the at most propositions and no other 
propositions, all the at least propositions and no other propositions, or both the at-most and at-
least propositions and no other propositions satisfies Proximity 4.   
 
Proof of Result 4 
 
Suppose that b and c are probability distributions over a finite set of worlds Ω, that wa ∈ Ω and that 
b and c invest equal amount of credence in wa. Suppose also that b distributes its credence amongst 
the inaccuracy-determining propositions at wa at least as evenly as c as defined by Brier-entropy. 
For, distance d, let Xd be the proposition (set of worlds) consisting of all and only worlds that are 
at least d units away from wa: Xd = {w in Ω | D(w, wa) > d}. We’ll show that if for all propositions 
Xd, b(Xd) < c(Xd), but for some Xd, b(Xd) < c(Xd) then b is more accurate than c at wa. 
Let the Fi be the inaccuracy-determining propositions at world wa.   
By Result 3 and its corollary we know that b is more accurate than c on the weighted absolute 
value score: Thus 
  
∑b(Fi) < ∑c(Fi) 
 
And so 
 
(∑b(Fi))2 < (∑c(Fi))2 
 
If b is at least as evenly distributed as c amongst Fi:  
 
[∑b(Fi)2/(∑b(Fi))2] >[∑c(Fi)2/(∑c(Fi))2] 
 
Since we’ve established that the denominator on the left is less than the denominator on the right, 
for b to be at least as evenly distributed as c, the numerator on the right must be greater than the 
numerator on the left: 
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∑c(Fi)2 > ∑b(Fi)2 

  
But the terms on either side of the inequality are just the inaccuracy scores of c and b respectively 
according to the weighted Brier score at wa.  So b is more accurate than c at wa on the weighted 
Brier score. 
 
Result 5 
 
The global Brier score that assigns equal weight to all convex propositions and no weight to any 
other propositions satisfies Proximity 5.   
 
Proof of Result 5 
 
Let Ω be a finite space of worlds where distance between worlds is given by the magnitude metric.  
Let wa be a world in Ω and let wa+d and wa-d be two worlds that are d units away from wa.  Suppose 
b and c are credence functions that invest equal amounts of credence in wa and which are such that 
b distributes its credence at least as evenly among non-wa worlds as c does.  We’ll show that if b 
invests all of its non-wa credence in the worlds that are d units away from wa and c invests all of its 
non-wa credence in worlds that are at least d units from wa, and there is some world in which c 
invests positive credence that is more than d units away from wa, b is more accurate than c at wa. 
 
Let b(wi) = bi and c(wi) = ci 
 
Then Ω looks like this: 
 

                                                                        
We’ll now consider all the convex propositions to which b assigns a non-extreme credence (that 
is, the convex propositions to which b does not assign 0 or 1).  Each such proposition belongs to 
one of the following four categories: 
 
Category 1: A true proposition to which b assigns ba-d 

Category 2: A false proposition to which b assigns ba-d 
Category 3: A true proposition to which b assigns ba+d 
Category 4: A false proposition to which b assigns ba+d 

 
We’ll first show that there is a 1-1 mapping between convex propositions in Categories 1 and 2, 
as well as a 1-1 mapping between convex propositions in Categories 3 and 4. 
 
Take any proposition in Category 1.  Such a proposition will be a set of worlds [wa-d-j, wa+k] for 
some 0 < j <a-d and for some 0 < k <d. Each such proposition gets mapped to a convex proposition 
in Category 2.  Which one?  The proposition with the same left-hand border as the Category 1 

w1 … … … wa-d 
 
ba-d, ca-d 

… wa … wa+d 

 
ba+d, ca+d 

… wx 

 
        cx 

… wn 



 30 

proposition, but to turn the proposition from a true one into a false one, the right-hand-border, 
instead of being k units to the right of wa, is k units to the left of wa.  For example: 
 
 
                                              
     

 
 
 
 
In other words, the Category 1 proposition [wa-d-j, wa+k]  gets mapped on to the Category 2 
proposition: [wa-d-j, wa-k].  We’ll call these two propositions “partners.” The partners of the 
propositions in Category 1 exhaust the propositions in Category 2. 
 
Now take any proposition in Category 3: A true proposition to which b assigns ba+d. Such a 
proposition will be a set of worlds [wa-j, wa+d+k] for some 0 <  j < d, and for some 0 < k < n-
(a+d). Each such proposition gets mapped to a convex proposition in Category 4.  Which one?  
One with the same right-hand-border as the Category 3 proposition, but to turn the proposition 
from true to false, the left-hand-border, instead of being j units to the left of wa, will be j units to 
the right of wa.  For example: 
 
                                              
     

 
 
 
 
In other words, the Category 3 proposition [wa-j, wa+d+k] gets mapped on to the Category 4 
proposition: [wa+j, wa+d+k]. We’ll call these two propositions “partners.” The partners of the 
propositions in Category 4 exhaust the propositions in Category 4.   
Now note that that for any proposition P in categories 1-4, and its partner proposition P’ 
 
                                                                                                                     n 
Il-brier(b(P), wa(P)) + Il-brier(b(P’), wa(P’)) = b(wa-d)2 + b(wa+d)2 = ba-d2 + ba+d2 = ∑ bi2 
                                                                                                                     i=1 
 
Let’s now consider c’s inaccuracy score with respect to convex propositions.   
Take a proposition P in Category 1: [wa-d-j, wa+k] for some 0 <  j < a-d, and for some 0 < k <d. 
Since this proposition is true at wa, the credences that contribute to c’s inaccuracy with respect to 

w1 … … wa-3 wa-2 

 
ba-2, ca-2 

wa-1 wa wa+1 wa+2 

 
ba+2, ca+2 

wa+3 wx 

 
         

… wn 

w1 … … wa-3 wa-2 

 
ba-2, ca-2 

wa-1 wa wa+1 wa+2 

 
ba+2, ca+2 

wa+3 wx 

 
         

… wn 

Category 1 Proposition (T) 

Category 2 Proposition (F) 

Category 3 Proposition (T) 

Category 4 Proposition (F)  
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this proposition are all the positive credences invested in worlds that are not members of this set: 
worlds in [w1, wa-d-j-1] as well as in the worlds in [wa+k+1, wn].  However, since we’re assuming that 
k<d and that c invests no positive credence in worlds that are fewer than d units away from wa, it 
follows that c invests no positive credence in [wa+k+1, wa+d-1]. Thus the worlds in [wa+k+1, wn] that 
contribute to c’s inaccuracy are all members of [wa+d, wn], and so the worlds that contribute to c’s 
inaccuracy in Ω are those in: [w1, wa-d-j-1] and [wa+d, wn]. 
 
Now consider this proposition’s partner P’ (in Category 2): [wa-d-j, wa-k].  Since this proposition is 
false, the credences that contribute to c’s inaccuracy with respect to that proposition are the positive 
credences invested in worlds that are members of this set.  Since c doesn’t invest any credence in 
worlds that are less than d units away from w, it doesn’t invest any credence in worlds in [wa-d+1, 
wa-k].  Thus, the credences that contribute to c’s inaccuracy with respect to this proposition will be 
the worlds in [wa-d-j, wa-d]. So looking at the inaccuracy of P and P’ we have: 
 
                                  a-d-j-1      n                      a-d-j-1           n 
Il-brier (c(P), w(P)) =    (  ∑ci +  ∑ci )2  >   (  ∑ ci2 + ∑ci2 )  
                                                    i=1        i=a+d                    i=1         i=a+d 
 
 
                                   a-d                           
Il-brier (c(P’), w(P’)) =  (   ∑ ci )2    
                                                   i= a-d-j                            
 
It follows that  
 
                                                           a-d-j-1          n              a-d 
Il-brier (c(P), w(P)) + Il-brier (c(P’), w(P’)) >  ∑ ci2 + ∑ci2  + ∑ ci2 

                                                            i=a           i=a+d       i=a-d-j           
 
 
 Reordering, (and noting that for all i∈ (a-d, a+d), ci = 0): 
 
                                                                   a-d-j-1         a-d             n                      n 
                                                             =     ∑ ci2 + ∑ci2  + ∑ ci2     = ∑ci2  
                  i=1           i=a-d-j        a+d                 i=1 
 
Thus,  
                                                            n 
Il-brier (c(P), w(P)) + Il-brier (c(P’), w(P’)) > ∑ci2 
                                                           i=1 
 
So here’s where we are: for each proposition P, in our first two categories, the sum of the inaccuracy 
scores of b with respect to P, and with respect to its partner P’ is the sum of the bi2, whereas the 
sum of the inaccuracy scores of c with respect to P and with respect to its partner P’ is greater than 
the sum of the ci2.  Since b is at least as evenly distributed as c, we know that: 
 
      n                    n                                 n                   n        
1- [∑b(wi)2/(∑b(wi))2] > 1- [∑c(wi)2/(∑c(wi))2] 
        i=1                i=1                              i=1                i=1 
 
Since ∑b(wi) = ∑c(wi) = 1, it follows that ∑bi2 < ∑ci2.  
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Since the inaccuracy of b with respect to P and P’ = ∑bi2, and the inaccuracy of c with respect to P 
and P’ is greater than ∑ci2, it follows from the fact that ∑bi2 < ∑ci2, that b’s inaccuracy with respect 
to these two propositions is greater than c’s inaccuracy with respect to these two propositions. 
 
An analogous argument applies to propositions in the Categories 3 and 4.  Thus, b’s inaccuracy 
with respect to all the propositions in these 4 categories is less than c’s total inaccuracy with respect 
to all the propositions in these 4 categories. 
 
It remains to consider convex propositions to which b assigns credence 1 or 0.  There are three 
categories: 
 
Category 5: True convex propositions to which b assigns credence 1 
Category 6: True convex propositions to which b assigns credence 0 
Category 7: False convex propositions to which b assigns credence 0. 
(Note that there are no false convex propositions to which b assigns credence 1). 
 
Let’s compare b and c’s inaccuracy with respect to propositions in each of these three categories.  
Every proposition in Category 5 is a true proposition to which b assigns credence 1, and so b gets 
inaccuracy score 0 with respect to these propositions.  Some of these propositions will be ones such 
that c assigns credence 1 to them as well.  But there will be at least one proposition to which b 
assigns credence 1 and which is such that c assigns credence less than 1.  For example: the 
proposition [wa-d, wa+d] is one to which b assigns credence 1, but c assigns credence less than 1 
(since c invests at least some positive credence in worlds that more than d-units away from wa). 
Every proposition in Category 6 is a true proposition to which b assigns credence 0, and so b gets 
inaccuracy score 1 with respect to these propositions.  Each such proposition is one that c also 
assigns credence 0 to (since c doesn’t invest any credence in worlds that are less than d-units away 
from wa).  Thus, b and c tie with respect to each proposition in this category. 
Finally, let’s consider Category 7: false propositions to which b assigns credence 0, and so gets 
inaccuracy score 0.  Some of these propositions may be ones to which c also assigns 0.  But there 
will be at least one false proposition such that b assigns credence 0 to it, and to which c assigns 
positive credence.  Consider a world in which c assigns positive credence that is more than d-units 
away from wa, and call it “wa+d+m.” The proposition {wa+d+m} will be a false convex proposition to 
which b assigns credence 0 and c assigns positive credence. 
 
Since across each of categories 5 and 7 b is less inaccurate than c at wa and across category 6, b and 
c are equally accurate, if we consider b’s inaccuracy across propositions in categories 5-7, b will be 
less inaccurate than c at wa.  We already established that b is less inaccurate than c across categories 
1-4.  Since categories 1-7 exhaust all the convex propositions, b is less inaccurate than c at wa on 
the weighted Brier score which assigns equal weight to all the convex propositions and no weight 
to any other propositions. 
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